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1.0 INTRODUCTION

One of the potentially most valuable research areas within

Artificial Intelligence (AI), from the perspe:tive of military

applications, involves the development of automatic planning systems.

Al planners not only have the potential of autonomously solving

various low-level planning problems such as in robotics applications,

but can form the basis of expert consultation systems for higher level

military planning problems, (e.g., planning division level maneuvers).

Most of the work in AI action planning has been done in the

context of robot problem solving, where the planners developed in this

context can be extended, at least in principal, to other domains.

Recent research in this area has focused on the development of

te:hniques to extend action planners to real world complex problem

domains. In particular, these efforts have focused on adapting

planners to uncertain and unpredictable environments where multiple

components of the plan may be executed in parallel by distributed

execution modules. Although this work is relevent to the development

of practical Al planners, from the perspective of eventual military

value, it is inherently limited. In particular, these planners lack a

satisfactory capability to explicitly incorporate an adversary's goals

and actions into the planning process. Consequently, they cannot

effectively plan against an adversary that is simultaneously planning

against them.

To illustrate the importance of incorporating an adversary,'s

goals, consider the work in planning under uncertainty. One accepted

technique is the use of information goals, where if information
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necessary to execute a plan is not available to the planner, then a

goal of collecting the required information is added to the plan,

(e.g., FINDLOC(x), if location of x is not known). When an adversary

is present, howevex, that adversary is likely to have a counterplan to

prevent the collection of the required information, and may use any of

a variety of tactics (e.g., have a goal of DECEIVELOC(x)) to achieve

this end. Unless the adversary's counter goals and actions are

explicitly taken into account, the information goal is not likely to

be achieved.

In this report we discuss the problem of extending action

planning techniques to problems involving planning against an

inteiligent adversary. In particular, this report summarizes the work

performed in the first year of a research program to develop automated

adversarial planning techniques. Section 2.0 provides some background

on AI planning and game playing research. Section 3.0 describes in

some detail, the capabilities and planning procedures of CP/I.0

(Contingency Planner/Version 1.0), our first version of a general

adversarial planning system. In addition, Section 3.0 also discusses

each individual action planning technique discussed in Section 2.0,

and discusses how they might be incorporated into the CP/x framework

and therefore extended to adversarial planning problems. Section 4.0

briefly addresses our plans for the next two years of this program.
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2.0 BACKGROUND

In this section, research relevant to the development of

adversarial planning techingues is reviewed.

2.1 Single Agent Action Planning

Most of the artificial intelligence (AI) work in planning has

been done in the context of research where a single-agent (e.g., a

robot) must plan a sequence off action. Since the goal of this work is

to extend planning techniques to adversarial planning problems,

relevant action planning techniques are introduced below.

2.1.1 Goal-Driven Action Planning

Within AI research, a common planning task involves a robot

(real or hypothetical) that exists in some type of blocks world. The

robot is given tasks which require it to move the blocks into some

particular configuration. Before starting, the robot is required to

'figure out' what actions need to be taken, i.e., to make a plan.

Some early planners (e.g., Fikes, et. al., 1972) would solve

problems such as this through a 'backward chaining' procedure. In

this approach, the planner is given a set of goals that are sufficient

to describe the goal state, a description of the initial state of the

world and a set of permissable operators or actions that can modify

the world state. The planner then looks at each goal, matches it

against the present world state and if it is not already true, looks

for an operator that can achieve it. If the operator cannot be

applied, because a precondition of its use is not satisfied, then the

unsatisfied precondition becomes a new goal to be achieved. This

process is recursively repeated until all goals are satisified.

3



To illustrate this approach, assume that we have a robot that

exists in a world consisting of three square blocks and a table.

Assume further that the blocks are initially set up as in Figure 2-1.

The robot is capable of only one action, PUTON(x,y), which means pick

up block x and put it on top of object y. y can either be another

block or the table. PUTON can only move one block at a time. Assume

further that our robot has been given the task of moving the blocks so

that block A is on top of B which is on top of C (see Figure 2-2).

This goal state can be described by the conjunction of goals

ON(BC) and ON(A,B). Assume our robot has been given these goals, and

it begins by trying to attain the first one, ON(B,C). Now, in order

to obtain this goal, the action PUTON(B,C) must be executed. However,

this action cannot be executed until the precondition that 'C is

clear' is true. Consequently, CLEAR(C) becomes a new goal to be

achieved. PUTON(C,Table) can directly achieve this and is

consequently the first action in the plan. Once C is clear,

PUTON(B,C) is now executable and therefore becomes the second action.

At this point ON(B,C) has been achieved, and ON(A,B) which is

executable. Consequently, this becomes the third action in the plan,

at which point the plan is complete.

One way to record this planning process is by the use of a

hierarchical goal tree where each goal, subgoal and action, that is

part of the plan, corresponds to a node in the tree. For example, a

goal tree that corresponds to the plan generated in the above example

is found in Figure 2-3. There are two features of this goal tree that

should be noticed. First the sequence of actions in the final plan

are contained in the terminal nodes. Simply read them from left to

4
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right. Second, by examining the ancestors for each action, we can

determine why each action needs to be taken. For instance, the action

PUTON(C,Table) is taken to CLEAR(C), which is necessary before ON(B,C)

can be achieved, which is one of the original goals to be achieved. A

robot problem solving plan that is represented as a goal tree,

therefore, not only consists or the actions that need to be executed,

but also of an explanation of why each action is needed. It is also

important to note that this goal tree was generated through a

recursive *depth-first' expansion of the tree. For instance, before

adding ON(A,B) to the goal tree, all of the descendants of ON(B,C)

were added first.

2.1.2 Hierarchical and Parallel Planning

More recent planners (e.g., Sacerdotti, 1976, 1977; Vere, 1981)

have introduced two important innovations to this simple goal-seeking

process; hierarchical plans and the production of parallel plans. In

hierarchical planning, goals and subgoals are, in effect, put in a

priority order. The more important goals are first worked out to a

reasonable level of detail (i.e., working out the major steps of the

plan), and less important goals, the details, are considered later.

One common technique for implementing hierarchical planning is to

postpone consideration of preconditions. In the above example, for

instance, the consideration of the CLEAR(C) precondition would be

delayed until ON(A,B) was first considered and added to the goal tree.

In another context, say planning a trip from Washington to Chicago,

there is ittle value in determining the details of getting to an

airport until the major step of determining which flight to take, and

therefore which airport, has been completed.

8



In parallel planning, instead of trying to achieve a set of

goals in some order and then trying to reorder the goals if this

doesn't work, the planner assumes all goals can be achieved

simultaneously unless interactions between the goals are found that

require the imposition of a time order on the consequent actions. For

instance, in the above example, it was simply fortuitous that the goal

ON(B,C) was explored before ON(A,B). Assume, ON(A,B) were the first

goal achieved. Then when ON(B,C) is explored, the first subgoal

generated, CLEAR(C), is inconsistent with the fact that ON(A,B) has

been achieved, requiring that the planner must undo ON(A,B). In

parallel planning, ON(A,B) and ON(B,C) would be assumed to be

seperately obtainable goals until it was 'discovered' that a

consequence of achieving ON(A,B) is that it violates a precondition of

the action PUTON(B,C), namely that CLEAR(B) is true. This would

result in the planner requiring that ON(B,C) be attained before

ON(A,B).

As can be seen, an important advantage of parallel planning is

that it avoids premature commitment to a particular ordering of goals

and actions, thereby avoiding the unnecessary work on an infeasible

ordering that was initially selected arbitrarily. In order to

represent such plans with parallel branches, the goal tree format

needs to be expanded so that goals/actions can be represented in

parallel, in effect, resulting in hierarchically more detailed

PERT-like networks. In AI, such PERT-like networks are usually

referred to as a Procedural Nets.

2.1.3 Skeleton Plans

Another approach to planning involves the use of stored

9



skeleton plans that outline a general sequence of steps for solving a

variety of planning problems (Friedland, 1979). Planning with

skeleton plans usually proceeds in two stages. First a skeleton plan

or subplan is found that is applicable to the given problem. Second,

the abstract steps in the plan are filled in with problem-solving

operators relevant to the particular problem domain. This

instantiation process involves large amounts of domain-specific

knowledge, often working through several levels of generality until a

problem-solving operator is found to accomplish each step in a

skeletal plan. If a suitable instantiation is found for each

abstracted step, the plan as a whole will be successful.

2.1.4 Opportunistic Planning

Another approach to planning is that of opportunistic planning

(Hayesroth, 1980). This approach is characterized by a flexible

control strategy that allows development of a plan in a combined

bottom-up and top-down fashion. Problem solving actions will switch

from one aspect of the planning problem to another depending on where

the next best opportunity exists to further refine a partially

completed plan. One result of this planning approach is that the

planner will generate various islands of planning action (i.e., local

subplans) that may be merged into a single integrated plan near the

end of the planning process.

2.1.5 Meta Planning

Meta planning is a general term that refers to reasoning about

the planning process. In complex problem domains where alternative

problem solving strategies are available, it is useful to incorporate

in a planner a mechanism that explicitly reasons about the best

10



approach to solving a planning problem. Examples of this kind of

reasoning can be found in the MOLGEN system (Stifick, 1981) and in PAM

(Wilensky, 1981).

2.1.6 Planning in Uncertain Environments

a major restriction of most planning systems is that the

planners must have sufficient information about the target world to

simulate courses of action to the levei of detail required to be able

to predict all consequences of each proposed action. Clearly, this

complete world knowledge is not available in most practical

situations. Indeed, uncertainty about the target world usually comes

in many forms, such as a lack of information about the present world

state, an inability to fully predict the affect of an action on the

world state, or even an inability to anticipate the response of other

agents in the target world. Within the action planning area, a number

of techniques are being explored for their potential to handle these

types of uncertainty. One technique for planning in uncertain

environments involves the use of information goals, requiring that

certain data be acquired during plan execution. For example, a plan

may be developed that includes the action "move object A to location

x", even if the location of A is unknown to the planner. This can be

done by inserting an information collection goal of "Find location of

object A", which can instantiate a "detect-by-TV" operator at the time

of execution.

Another set of techniques for planning under uncertainty

involves an ability to dynamically repair plans. In most context

where there exists a significant degree of uncertainty, it is

impossible to plan long sequences of actions in advance, because

11



unexpected conditions usually occur very early during the execution of

the plan. In this type of context the planner must anticipate a need

for replanning. An economical way to do this type of replanning is to

isolate the previous goals' actions affected by the newly discovered

conditions, and then to teplace them with new subplans which will work

in the new state. In other words, attempt to save as much of the

original goal tree as possible. This type of replanning technique can

be found in Hayes (1975).

2.1.7 Explicitly Dealing With Time

Most planning systems treat actions as though they occured

instantaneously. They incorporate no model of what happens during the

execution of an action, and consequently are incapable of describing

world states during action execution. Although the need for such

time-dependent models is commonly accepted (see Sacerdotti, 1980),

there is no ongoing work in this area. (See Hendrix, 1973, for some

early work.)

Another way in which time can be dealt with involves the

scheduling of actions. In particular, Tate and Daniels (1977) and

Vere (1981) describe planners that translates simultaneous actions in

parallel plans into specific action start and end times in a PERT

chart.

2.1.8 Distributed Execution of Plans

When parallel branches of a plan are generated, it may be

desirable to also execute them in parallel. The difficulty that often

results with such distributed execution is the occurance of

interactions between different execution modules. Typically,

interactions are detrimental, and generate problems involving resource

12



conflicts and the undoing of each others' achievements.

Techniques being developed to resolve these types of problems

usually involve communication protocols that keep the various

execution modules informed of each others relevant activities, (e.g.,

Smith 1979) and general procedures that enforce independence between

modules by locally resolving interactions, (e.g., such as when two

automobiles arrive simultaneously at an intersection and the vehicle

on the right side has the right of way).

2.1.9 Interactive Planning

Research in robot and other automatic problem solving domains

have resulted in a number of planning systems that function

autonomously, but have limited capabilities. One way to expand the

capability of such systems is to develop interactive systems where

both the human user and the automatic planner cooperate to develop a

satisfactory plan. An example of such an interactive planner is found

in Wilkins and Robinson (1981).

2.1.10 Relevance to Adversarial Planning

It is clear that the above-discussed techniques and AI planning

issues are relevant to any planning domain, including adversarial

planning. Unfortunately, from the perspective of planning problems

involving an adversary, this work is inherently limited. This is

because neither the formalisms for representing plans nor the planning

procedures have any convenient mechanisms for incorporating the goals

and actions of an adversary.

To illustrate the importance of incorporating an adversary's

goals, consider again the work in planning under uncertainty. As

noted there, information collection goals are sometimes added to a

13



plan to collect necessary data at the time of plan execution. When an

adversary is present, however, he is likely to have a counterplan of

his own to prevent the collection of the required information, and may

use any of a variety of tactics (e.g., deception) to achieve this end.

Unless the adversary's counter goals and possible actions are

explicitly taken into account during planning, the information goal is

not likely to be achieved.

A similar problem occurs with the work in distributed planning

and execution, where the use of communication protocols and procedures

to enforce coordination are relied upon. When an adversary is

present, that adversary is likely to engage in actions to disrupt

communication and coordination. Consequently, unless these

adversarial countergoals are explicitly considered in planning,

successful execution of the plan is unlikely.

2.2 AI Game Playing Programs

As discussed above, most of the research in AI planning has been

done in the context of planning the actions of a single agent.

Although this work addresses a number of issues, it does not directly

attack the problem of planning against an adversary. Another area of

AI planning research, that is specifically oriented toward planning

against an adversary, involves the development of intelligent game

playing programs. The relevance of this work to the more general

problem of planning against an adversary is discussed below.

2.2.1 Goal-Driven Game Playing

For purposes of this discussion, two types of game playing

programs are distinguished as those which utilize a 'planning without

14



goals' approach and those which utilize a 'planning with goals'

approach. A typical example of the 'planning without goals' approach

is seen in the Northwestern University chess program (Slate &

Atkinson, 1978). This program selects a move by examining all

possible sequences fer six or seven moves. It then does a weighted

linear evaluation of the features (relative number of points,

mobility, etc.) of each of the terminal positions. The program then

picks the move that maximizes the minimum possible evaluation in the

terminal positions. At no point during the planning process does this

program focus its attention on achieving specified goals or

objectives. Or to put it another way, the program contains no

conceptual knowledge about what it should be trying to do, rather it

uses the computational power and speed of the computer to review

everything it can do and then through a simple decision rule, chooses

the 'best'.

This approach has been very successful in games such as

checkers and chess where the average number of moves in a position

(around 8 for checkers and 25 for chess) is small enough so that a

more or less thorough examination of all possible move sequences, for

at least several moves ahead, is feasible. In fact, virtually all of

the chess and checkers programs noted in the popular literature, such

as in computer chess tournaments or programs available for home

computers, use some variant of this approach. Unfortunately, in other

games, such as the oriental game Go, where there are around 250 legal

moves per position, and 'real life' planning under adversity

situations, where an opponent has virtually a limitless variety of

actions available to him, the use of this type of exhaustive search

15



approach is not feasible.

An alternative approach to game playing, that is more in the

mainstream of AI research, involves the use of goals and objectives to

control the move look-ahead process; see Berliner (1977), Pitrat

(1976), Wilkins (1979), Reitman and Wi'lcox (1979), Lehner (1983). The

essence of this approach is that if a program is careful in selecting

objectives it should try to achieve, then it should be sufficient for

planning purposes to only examine actions that potentially aid in

achieving those objectives.

To illustrate this goal-oriented approach, assume that we have

a chess position where one player, White, believes it feasible to find

a mating combination. Consequently, White starts with the goal of

CAPTUREKING. To do this, White isolates a square he needs to occupy

with his queen to achieve checkmate. However, this square is

protected by a black knight. Consequently, REMOVE KNIGHT from this

square becomes a subgoal. This type of subgoal can be achieved by

actually capturing the piece, so CAPTUREKNIGHT becomes a subgoal of

REMOVE KNIGHT. If the knight can be directly captured, then that

capture move becomes the first move. If not, a new subgoal

THREATENKNIGHT is activated that results in a move that threatens to

capture the knight on the next move. In this example, therefore, the

first move of a goal-driven look-ahead is one that threatens the

knight, so that it can eventually be captured, so that it is no longer

defending the black king, so checkmate can be achieved. By carefully

considering objectives and goals at each step in look-ahead in this

way a program is able to isolate only a few moves that need to be

examined.

16



2.2.2 Goal Pairing: Predicting an Adversary's Goals

Of course, in order to effectively limit the number of possible

move sequences to examine, the game playing program must not only

determine its own goals, but it must be able to guess the goals of an

opponent. Surprisingly this is often not nearly as difficult as might

be anticipated. This is because of a general %echnique (often only

implicitly used by developers of AI game playing programs) that will

be referred to as 'goal pairing'. Goal pairing is simply the process

of identifying an adversary's countergoal to each friendly goal or

subgoal that has been generated. In our chess example, for instance,

it is reasonable to assume that White's goal of CAPTURE KING

corresponds to Black's goal of SAVE KING and furthermore that Black

would like to prevent the removal of his knight, by preventing its

capture. Therefore, after a white move that threatens black's knight,

black's move will be one that removes that threat. Figure 2-4 lists

the White/Black goal pairs that would result from this example.

It should be noted that most of the research on the use of

goals and plans game playing has been oriented toward developing

tactical analyses programs. That is, the planners are designed to

handle tactical planning problems where even 'minor' deviations from a

correct move sequence can lead to failure. The next section discusses

some work extending these techniques to high-level strategic planning.

2.2.3 using Scenarios to Support Strategic Planning

In many adversarial planning situations, in both game playing

and real-life conflicts, human planners consider high-level strategtc

plans that can not be analyzed by the same type of precise

action-by-action look-ahead that is characteristic of tactical
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WHITE GOALS BLACK COUNTER GOALS

CAPTUREKING SAVEKING

REMOVE KNIGHT PREVENT-REMOVEKNIGHT

CAPTURE KNIGHT _KNIGHT

THREATENKNIGHT STOP THREATENKNIGHT

FIGURE 2-4

AN EXAMPLE OF GOAL PAIRING
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analysis. This is because the strategic plan is at such a high level

that there will usually be a large number of reasonable move sequences

that are consistent with high-level strategic goals. Or, put another

way, even after goals and objectives are specified for both sides,

there are too many reasonable plans of action consistent with those

objectives and goals to be able to consider them all. In military

planning, for instance, it is not feasible to translate a Corps level

concept plan into a precise plan of action where all possible friendly

and enemy actions are taken into detailed consideration and

anticipated. Despite these problems, it is clear that human planners

are able to perform some type of strategic planning or look-ahead that

anticipate likely results.

What often makes this type of strategic planning possible is

that usually all the action sequences that follow the basic pattern in

a strategic plan will have a number of common positional side effects.

Or, equivalently, any one sequence of actions that attains a strategic

plan is representative, strategically, of all the possible sequences.

Consequently, it is possible to determine some of the consequences of

a proposed strategic plan by exmaining just one specific plan of

action to implement that plan and generalizing results to other

possible plans of action. In Lehner (1983), this is referred to as

'representative searching', in military planning it is sometimes

referred to as 'playing out a scenario'.

A representative search program for strategic planning in Go is

found in Lehner (1983). An example illustrating how this program

works is provided below. Note that the spatial/visual nature of

strategic plans in Go should make this example understandable for
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readers unfamiliar with the game.

The program began with the position in Figure 2-5. The White

stone at 03 and 04 are loosely surrounded by the Black stones at K4

and around Q4. Black, the program, starts with the goal of trying to

capture these White stones. Consequently, the representative search

program starts with a top-level goal of CAPTURE the White stones

around 03, and assumes Black's countergoal is to SAVE those stones.

In order to capture a group of stones in Go, one must first surround

them. Consequently, the first subgoal of CAPTURE (03) is to SURROUND

(03), for which White's counter goal is to ESCAPE. Now in order to

effectively prevent ESCAPE, Black must close up the line between K4

and Q6, by placing stones in between them. Black can do this by

playing a sequence of stones from Q6 to K4 (ENCLOSE-RIGHT) or by

starting at K4 and moving toward Q6 (ENCLOSELEFT). The program

starts with the former. This returns the move 06. After 06 is

played, the only avenue of ESCAPE for White is between the stones K4

and 06, so White's assumed response is M5.

After the White play at M5, attempting to enclose the White

stones by playing stones in the K4-06 line is not feasible because

White has already broken through that line. Consequently, a new goal

of CREATELINE, to continue the attack by creating a new line of

attack is called. Also, since the Black stone at K4 is also now

loosely surrounded, the Black goal of SAVE (K4) is also added,

resulting in an ESCAPE subgoal.

The ponjunction of the Black CREATELINE and ESCAPE goals

results in the move at K6. White continues his own ESCAPE by smashing

through the newly formed K6-06 line with a play at M7, at which point
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A B C D E F G H J K L M N 0 P Q R S T

19 . . . . . . . . . . . . . . . . . . 19

128 . . . . . . . . . . . . . . . . . . . 12

17 . . . . . . . . . . . . . . . . . . 17

16 . . . . . . . . . . . . . . . . . . 16

15 . . . . . . . . . . . . . . . . . . 15

14 . . . . . . . . . . . . . . . . . . . 14

13. .. . . (:11::) * . o .. . . . . . . 13

12 . . . . . . . . . . . . . . . . . . . 12

i .. . . . 0 . . . . . . . . . . . 1

1 . . . . . . . . . . . . . . . . . 10

9 . . . . . . . ... . • o . . . . . 9

7 . . . . ...... .. . . . . . . . . 7

5 . . . . .... ... . . . . . . . . 5

3 .............0 0 -. -
2 . . . . . . . . . . . . . . . . . . . 2

. .. ... .... . .... . . .

A B C D E F G H J K L M N 0 P Q R S T

O = BLACK = WHITE

FIGURE 2-5

INITIAL POSITION IN REPRESENTATIVE SEARCH SEQUENCE
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White has successfully escaped, because CREATELINE cannot build a new

attack line. However, also at this point the representative search

program 'notices' that in the process of attacking the White stones on

the right, he has nearly surrounded the White stone at G4.

Consequently, he can now switch direction and attempt to SURROUND

(G4).

There are several things to note about this example. First,

that any sequence of reasonable moves consistent with the direction of

play depicted by with the arrows in Figure 2-6 (of which there are

hundreds) would have the same positional consequences, namely that

White escapes, but that Black can start a new attack in a different

direction. Consequently, other move sequenceb that attempt to achieve

the high-level goal of SURROUNDED (03) do not need to be considered in

detail. Second, the fact that Black's original goal was unobtainable,

but that pursuing it set up the opportunity to obtain another, equally

valuable goal, is not unique to this example. It is often the case

that the primary value in engaging in one strategic course of action

is that it directs an adversary's resources and attention in a

direction that it makes a second follow-on course of action very

feasible. Such indirect strategies and goals are very important to

military planning, and are precisely the type of planning which this

type representative search or scenario generation procedure should be

effective.
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A B CD E F G H J K LM N 0 P QR ST

19 . . . . . . . . . . . . . . . . . . 19

18 ..... 18

17 .... . .. 17

16 ..... 16

15 .. . . . . . . . . . .. 15

14 . . . . . . . . . . 14

13 . . . . . . . . . . . . . . . . . . . 13

12 . . . . . . . . 12

10..i . . . . . . . . . .i1

9 . . .. . . . . . . . 9

S. . .. .. .. ... 8

7 . . . .. . . . . 4 . . . . . . . 7

'5 .. . . . . . . . .. 2 . . . . .. 5

4 . 1: (1,,,o .
2 . . . . . . . . . . . . . . . . . . . 2

11

A B C D E F G H J K L M N O P Q R S T

FIGURE 2-6

DIRECTION OF PLAY FOR REPRESENTATIVE SEARCH SEQUENCE
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3.0 A THEORY OF ADVERSARIAL PLANNING

Overall the goal of this research program is to extend action

planning techniques into domains involving an intelligent adversary.

The focus of the first year of this effort has been to implement

initial version of an adversarial planner that could serve as a

baseline system on top of which alternative techniques for adversarial

planning could be implemented and evaluated. Section 3.1 below

describes the baseline system, CP/1.0 (Contingency Planner/Version

1.0), which we have developed. Section 3.2 shows an example of CP/1.0

planning behavior in the game of Othello. Section 3.3 then examines

each of the individual planning techniques noted in Section 2.0 and

discusses how, in theory, they could be embedded within the

adversarial CP/x framework.

3.1 Overview of CP/l.0: A Baseline Adversarial Planner

CP/I.0 utilizes two different types of planning procedures:

tactical planning and metaplanning. Tactical planning occurs whenever

CP/l.0 must determine the outcome of a well-defined goal/countergoal

pairing. That is, tactical planning involves the process of

generating a move tree to determine whether the planner's goal on the

advers'ry'' countergoal will be achieved, and to discover some side

effects that result from attempting to achieve a goal. Metaplanning,

on the other hand, involves the use of knowledge about planning to

control the planning process. Sections 3.1.1 and 3.2.1 below describe

each of these planning procedures.
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3.1.1 CP/1.0 Tactical Planning

Like most planners, CP/1.0 treat3 planning as a problem in goal

tree formation. Described below are the type of goal trees CP/l.0

generates in performing a tactical search and how it goes about

generating them.

Contingency Goal Trees - Within CP/1.0, plans are represented using a

general formalism called a Contingency Goal Tree (CGT). CGTs are

similar to the goal tree used in single agent action planning, with

the important difference that each node in the tree include both a

planner's goal and an adversary's assumed countergoal. Figure 3-1

shows a possible CGT for a single move sequence leading to a draw for

White in the chess position show in Figure 3-2. CP/I.0 atempts to

solve adversarial planning problems by generating multiple CGTs that

combine to form a set of contingency plans against each of the

reasonable options available to an adversary. In a game, such as

chess, the set of terminal nodes in the CGTs combine to form a move

tree. CP/1.0 accepts as input any incomplete CGT and attempts to

generate a set of expanded CGTs that represent contingency plans for

achieving the top goal in the input CGT. Consequently, CP/I.0 will

either return a set of CGTs; or NIL if the top goal cannot reasonably

be achieved. To solve a planning problem, CP/I.0 uses the following

basic procedures for generating CGTs.

Goal-driven, Depth-first CGT Expansion - Given an incomplete CGT,

CP/l.0 will expand the CGT in a recursive depth-first manner. It will

begin by identifying the first node in the input CGT that contains~a

goal pair for which a well-defined action is not defined and will

process the goal for the side on the move.
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DRAW - WIN

(For White) (For Black)

[OR NOT(Q(BP)) Q(WP)J-IAND Q(8P) NOT(Q(WP)))

[OR CAP(P) Q(WP)]-I(AND Q(BP) CAP(WP)J

(THREATBOTH CAM(P) Q(WP))-(AND Q(BP) CAP(WP)J Q(WP)-CAP(WP)

MVTO(K.G7)-NIL HVTO(K,BP WP)-MVTOCBP.hl) MVTO(K..P-MVTO(K.WP)

NIL-MVTO(BP,h4I) MVTOCK.,.6)-NIL NIL-MVTOCBP,h3)

MVTO(K,e6)-NIL NIL-HvTOCK~b6) MVTO(K~d7)-NIL

Q( )=Queen pawn

CAP( )=CAPTURE

BP = Black Pawn

WKP = White Pawn

FIGURE 3-1

ILLUSTRATIVE CONTINGENCY GOAL TREE
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FIGURE 3-2

A STUDY BY RETI. WHITE TO MOVE AND DRAW.

BLACK PAWN THREATENING TO RUN TO Hi.
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CP/1.0 enters a search problem with a top-level goal-countergoal

pairing and a possible side effects list (described below).

Depending on the position, processing of the 'present' goal (usually

the goal most recently added to the CGT) of the side on the move will

result in the generation of a pair of subgoals, which are then added

onto the CGT, or it will result in the generation of a move. If a new

goal pair is added to the CGT, then the new present goal of the side

on the move is processed to produce a new subgoal pair or move. When

a move is proposed, it is placed on the hypothetical board. The most

recently added goal for the new side on the move becomes the present

goal which is processed to see if a new subgoal pair or move can be

generated.

Processing of the present goal involves reading in a 'goal

object' from a separate file and executing the procedures attached to

the goal object. Goal objects are simply structures containing data

and functions acting on this data. They interface with the particular

problem environment through four functions. 'Subgoal' returns a list

of subgoal(s) that is (are) currently most appropriate. 'Countergoal'

examines the environment and returns a list of suitable

countergoal(s). 'Failed' tests if the goal in the present position

has clearly failed. 'Succeeded' tests if the goal in the present

position has already succeeded. 'Feasible' quickly tests the

feasibility of a goal and returns true if the goal could be feasible

in the current environment. 'Action' updates the enviornment as a

function oftthe goal/countergoal pairing.

Processing of an instantiated goal object for the side on move

will generate an assumed countergoal for the opposing side, along with
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one of the following:

1. an update of the hypothetical world, after which CP/I.0

calls a domain specific utility to determine which side

moves next;

2. a single subgoal, which is added to the CGT and is then

processed as the new present goal;

3. an incomplete subtree, usually specifying a sequence of

subgoals, of which the first subgoal is processed as

the new present goal after the entire subtree is

added to the CGT;

4. a NIL if processing of the present goal does not result

in an action, subgoal or subtree, in which case the

antecedent node for the side on the move is once again

processed as the new present goal, thereby starting a

new branch of the CGT.

5. A 'failed' or 'succeeded', which is similar to No. 4

above except that instead of moving to an antecedent

node, a move backup must occur as described in the

subsection below.

Goal-driven backup - An individual move sequence terminates whenever

either the planner's or adversary's top-level goal is clearly

obtainable. Obtaining the top goal, however, does not necessarily

imply that the move sequence is a success. A move sequence may result

in a number of unanticipated side effects that result in providing

the opposing side with new opportunities. For instance, if the

planner enters a search problem with a SAVE(X) goal, paired with an

adversary's CAPTURE(X) countergoal, a particular sequence may result
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in the planner successfully saving X, but the situation has changed

such that the adversary now has a new target, Y, to pursue. It is now

feasible for the adversary to attempt to CAPTURE(Y) instead. In

CP/I.0, unanticipated side effects are defined as new opportunities,

which in turn are defined as new goals to pursue that were not

feasible in the original position.

In order to find new goals, CP/I.q engages in a sequence of

'information searches.' At the end of a move sequence where one side

achieved its initial goal, CP/l.0 iterates through a set of recursive

calls to CP/I.0, with each of the goals in a 'possible side effects'

list, to try to find a way to continue play for the opposing side.

The type of move backup that will occur depends on whether or not

there exist new goals for the opposing side.

Whenever processing of the present goal returns a NIL, and CP/l.0

cannot move up to an antecedent goal (e.g., when it is the top goal);

or when it returns a 'failed', a backup on the proposed move sequence

must take place. In CP/1.0 the procedure for determining how far to

backup is goal-driven and proceeds according to the following three

steps:

1. iterate through a sequence of information searches

on the position, by recursively calling CP/1.0, to

identify new goals that can be pursued by the

failing side;

2. based on the results of the information searches,

identify the first node in the CGT (assuming a

depth-first ordering of nodes) that is

impacted; and
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3. remove all nodes that were generated after the

impacted node (which automatically includes

the moves identified in the terminal nodes),

modify the inpacted node through a conjunction

or disjunction of new goals, and continue the

CGT generation process.

The information searches in 1. proceed as described above.

Regarding 2. and 3., if the information searches do not discover new

goals, then the only node in the CGT that is clearly impacted is the

one that directly generated the most recent move for the side that

failed. For the side on the move, the goal is modified to be a

conjunction of that oal and NOT[MOVE(X)], where MOVE(X) is the move

that failed. Ali nodes added to the CGT after this modifified goal

are removed ar- CGT expansion continues as before.

If thne information searches do discover unanticipated side

effects (i.e., new goals to consider), then it is necessary to

discover which nodes in the CGT the new goal interacts with. That is,

for each goal in the CGT, it needs to be determined if the discovery

of this new opportunity would affect how the planner should go about

crying to achieve that goal. Since goal objects carry with them lists

of possible side effects, it is a matter of selecting the first goal

in the CGT that has the discovered goal on its side effect list.

Frequently, it is assumed that a newly discovered goal impacts the top

goal in the CGT, in which case all generated nodes in the CGT are

removed and the top goal is modified to be a conjunction or

disjunction of the original top goal with the new goal. However, in

various domains, such as some war games, there may be a number of
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independent areas of local conflict, where a discovery of local side

effects clearly do not impact overall planning.

3.1.2 Metaplanning in CP/I.0

The metaplanning facility in CP/1.0 is a general, extendable

facility for deciding what planning strategies to use. Through the

use of domain specific pattern matching routines, it can be used to

select a top-level goal pair for a contingency goal tree. It can also

be used to select between the tactical planning mechanism described in

SXection 3.1.1 and any other planning mechanisms that may be provided.

Other planning mechanisms will probably be most useful in the opening

moves of a game like Chess, where a number of standard book openings

are used, and in the final moves of a game like Othello, where there

are few possible moves leading to widely varying outcomes.

The metaplanning facility, like the tactical planning facility,

uses a type of goal objects. However, unlike the tactical planner,

the goal objects are not paired because the metaplanner does not

attempt to match the planning mechanism of the opponent. Like the

tactical planner, each metagol object contains a feasibility test.

Rather than a list of possible subgoals, the metagoal objects contain

a list of planning actions to be taken in sequence to achieve the

goal. Examples of types of planning actions are contingency planning

using a specific top-level goal pair and exhaustive search. Each

metagoal object may also include an alternate metagoal object to be

tried if the first fails.

The metaplanner works in a very straightforward manner. When

it is called, it is given an initial metagol object to attempt. It

first uses the feasibility test to assure that the plan outlined in
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the frame is reasonable in the given situation. If it is, the

metaplanner attempts to use the first planning action from the

planning action list. The metaplanner continues to use the planning

actions on the list until the list is exhausted or until one of the

planning actions fails. If a planning action fails or the metagoal is

not feasible, the metaplanner attempts to process the alternative

metagoal frame in the same manner if processed the original.

3.1.3 Summary of CP/l.0

Overall, CP/I.0 implements an approach to tactical planning

that incorporates the goal-driven AI game-playing techniques discussed

in Section 2.2. in particular, the tactical planning facility

incorporates the same techniques found in tactical planners for Chess

(Berliner, 1978); Pitrat, 1977; and Wilkins, 1979), and Go (Reitman

and Wilcox, 1979). The facility to search for unanticipated side

effects can be used to generate the type strategic planning behavior

discussed in Lehner (1983). Unfortunately, because of the limited

nature of our initial test domain (the game of Othello). This later

capability has not been significantly tested.

What is unique about CP/I.0 is not so much what it does, but

rather how it does. First, the CP/l.0 software is generic, which

makes it suitable for application in multiple domains. Previous

systems that have shown adversarial planning capabilities were

entirely domain specific, i.e., written as game playing programs.

Second CP/l.0 utilizes a formalism for representing plans, CGTs, that

is a generalization of the goal tree formalism found in AI action

planning. Consequently, both AI action planning and AI game-playing

techniques can in theory be incorporated into the CP/x framework. The
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CP/x framework therefore provides the opportunity to merge these two

sets of techniques into the combined area that we have called

adversarial planning.

An example of CP/l.0 planning is found in Appendix A.

3.2 Advanced Adversarial Planning Techniques

The overall goal to this research program is to extend action

planning techniques to problems involving planning against an

intelligent adversary. Section 2.0 discussed single agent planning

techniques that could also be appropriate for adversarial planning

problema S ion 3 Presented our 3.,i. i bseline p1"nien

system, CP/1.0, that provides a testbed for examining alternative

techniques for adversarial planning. In this section each of the

advanced action planning techniques noted in Section 2.1 are discussed

from the perspective of how they might be incorporated within the

general CP/x framework.

3.2.1 Goal-Driven Adversarial Planning

As discussed in Section 2.1, action planning techniques are

generally goal-driven. Planning is usually treated as a problem in

goal tree formation. The same is true of the CP/x approach. In

particular, we have extended the concept of a goal tree to that of a

contingency goal tree. A CGT is a generalized goal tree in as much as

if a CGT did not include the adversary's goal, it would contain the

same information as a simple goal tree. In the same way that action

planners treat planning as a problem in goal tree formation, CP/I_0

treats adversarial planning as a problem in contingency goal tree

formation.
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3.2.2 Hierarchical and Parallel Adversarial Planning

As discussed in Section 2.1, hierarchical planning involves a

planning process where goals are put in priority order, so that the

more important goals, (i.e., the goals that correspond with major

steps of a plan) are worked out first and less important goals, (i.e.,

the details), are considered later. In CP/x framework, hierarchical

planning could also occur. In the situation where higher levels of

planning abstraction are defined, this would work as follows.

Recall that in CP/I.0 depth first planning, (i.e., subgoal

generation) continues until it gets to the point where there exists a

utility for updating the hypothetical world for the current

goal/countergoal pairing. In the game of Othello, this simply

occurred at the level of a move-nil pairing. For a domain in which

there exist domain specific utilities for updating the hypothetical

world at different levels of goal/countergoal pairs, then CP/x can

plan at different levels of abstraction. First, CP/x would plan at

the most general level of abstraction by engaging in depth first

planning until it reaches the first set of world update utilities.

This would result in a set of high-level contingency plans. Then,

using these high level contingency goal trees as the input CGTs, CP/x

would continue to expand the CGTs by continuing the depth first

subgoal generation process beyond the first world update utility

encountered and stopping at the second. CP/x would do this

recursively for all defined levels of abstraction.

Of covrse, in order to do this type of hierarchical planning, the

domain in which CP/x is applied requires that these update utilites

can in fact be defined. In games such as Othello, Chess, and Go,
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generating such utilities is not possible. However, in domains such

as some war games, utilites may be defined for different levels of

conflict (e.g., CORPS, Division, Battalion).

With regard to parallel planning, no explicit techniques have

been identified that can incorporate parallel planning into the CP/x

adversarial planning environment. However, in the same way that a

simple goal tree can be generalized to include parallel branches, it

is reasonable to assume that a contingency goal tree can also be

generalized to include parallel branches.

3.2.3 Using Skeleton Plans in Adversarial Planning

In action planning, this type of planning involves the use of

stored skeletal plans that outline a general sequence of steps for

solving problems in a variety of problem areas. Skeletal plans are

usually stored in the form of partially complete goal trees. In the

case of adversarial planning, skeletal plans can be stored in the form

of partially complete CGTs. Since, CP/x accepts as input a partial

CGT of any form, (i.e., any part of the tree can be left out) then

skeletal planning can occur in a variety of ways. For example, a

skeletal plan may have just the top layers of the CGT, with both the

friendly and adversary countergoals, defined. On the other hand, a

skeletal plan may involve a contingency goal tree with just the

friendly goals identified and the adversarial goals left uncertain.

In the latter case, then, we would have prestored the major sequence

of actions the planner would take and CP/x would try to fill in the

adversary's lountergoals.

3.2.4 Opportunistic Planning in Adversarial Domains

Opportunistic planning as discussed in Section 2.0 is an
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approach to planning that is characterized by flexible planning

control structure that allows development of a plan in both bottom-up

and top-down manner. At present, CP/x is not compatible with this

type of flexible control structure. However, the representative

search technique can be emulated within the CP/x approach. As was

discussed in Section 2.1, representative searching does exhibit a

number of behaviors that are similar to that of opportunistic

planning.

3.2.5 Metaplanning in Adversarial Domains

As discussed in Section 3.1, metaplanning is incorporated

within the CP/x framework through the use of metagoals. Consequently,

metaplanning is one advanced action planning technique that has

already been incorporated into the CP/x framework. Unfortunately,

because of this limited nature of our test domain (the game of

Othello), this facility has not significantly tested.

3.2.6 Adversarial Planning in Uncertain Environments

Adversarial planning in uncertain environments involves at

least two dimensions of uncertainty. First, there is the dimension of

uncertainty about the adversary's goals. Second, there is the

dimension of uncertainty about the position of adversary resources.

In the CP/x framework, uncertainty about the opponent's goals and

objectives is handled by generating contingency plans for each

possible goal and objective. One limit of the existing CP/1.0

framework is that there does not exist a mechanism for limiting the

number of possible adversary goals or objectives that are consideredt

As a result, in some domains there may be a combinatorial explosion of

the number of CGTs that are generated. In order to prevent this from
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occurring, a deductive mechanism should be added that will identify

the most likely adversarial countergoals of each of the friendly

goals. Utilization of this deductive mechanism should be goal

specific and would be controlled with routines attached to the

countergoal slot in the goal objects in a CP/x knowledge base.

For the second problem, where the planner has a lack of knowledge

about tne position or nature of adversary resources, there exist three

subproblems that need to be solved. First, there is the problem of

simply deducing or making a best guess as to where and what those

resources are. Second, there is the problem of planning to collect

information about uncertain resources. Third, there is the problem of

generating plans that take into account alternative contingencies in

the quantity or location of resources; that is trying to generate

plans that are robust against lack of knowledge.

The first problem is purely an inferencing problem and is not

within the scope of this research program. The second problem, from

our present persepctive, appears to require only the use of

information goals, [i.e., COLLECTINFORMATION(X)] paired with an

adversary's countergoals of preventing the collection of information.

Whether the adversary does that by directly intercepting our

information collection resources or through deception tactics, will be

determined by the subgoals available to the adversary's

PREVENT INFORMATION COLLECTION countergoal.

The third problem is one which we have not yet addressed. At

present, the only mechanism that we envision is one that is similar to

the contingency goal tree generation process, where instead of having

alternative countergoals, alternative possible world states are
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considered. A contingency plan for each one would be developed.

Although this approach is theoretically feasible, in most cases it

will probably lead to a combinatorial explosion in the search space.

Consequently, we need to develop a more elegant approach.

3.2.7 Dealing with Time in Adversarial Planning

As discussed in Section 2.1, planning systems that explicitly

deal with time are rare. There exist very few if any truly

time-dependent models for planning. In the case of adversarial

planning, the problem is the same. There do not exist at present what

appear to be good models or techniques for incorporating

time-dependent outcomes into the adversarial planning process. In the

CP/x framework, the best that can be done at the moment, is to attach

a time-required-to-generate-outcomes to the world update functions.

What that means is that when there exists a local conflict, the

utility for updating the world state can also have incorporated within

it an estimate as to the time required to resolve that conflict.

Given this approach, CP/x can estimate time required to execute one

versus another contingency plan. This type of time-dependent world

update is reasonable in domains where all actions occur in a linear

sequence. However, for parallel planning, which will have

parallel-with-respect-to-time actions, it becomes significantly more

difficult to use this approach.

3.2.8 Distributed Execution in Adversarial Planning

As discussed in Section 2.1.8, it is sometimes useful in

parallel planning to have separate execution modules to execute tke

actions in each of the parallel branches in a plan. Distributed

execution modules need to be able to communicate and coordinate. In
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adversarial domains, however, an intelligent adversary will attempt to

disrupt this communication and/or coordination. In order to handle

that kind of problem within the CP/x framework, we need to incorporate

a MAINTAIN-COMMUNICATION and a MAINTAIN-COORDINATION goal and assume

that the adversary has a countergoal of DISRUPTCOMMUNICATION and/or

DISRUPT COORDINATION. Each of these maintain and disrupt goals then

will have subgoals attached to them that correspond to explicit

techniques for obtaining these goals.

3.2.9 Interactive Adversarial Planning

There are a number of ways that an adversarial planning system

such as CP/x can be adapted to cooperative man/machine planning. One

approach that is consistent with some existing interactive action

planners, is to modify the goal objects to allow user inputs in the

subgoal selection process. The second approach is to let the

adversarial planner CP/x play the role of a "devil's advocate",

pointing out specific counterplans available to an adversary.

Finally, a third, theoretical very interesting approach is one that

treats cooperative planning against an adversary as a multi-agent

planning problem. In this case, CP/x must explicitly reason about

both the adversary's competitive agent's goals and the user's (a

cooperative agent) goals. This last approach remains somewhat

speculative and we are not sure how to implement it.

3.3.10 Extending CP/x to Multi-Agent Environments

CP/x reasons about a competitive agent's goals and plans

through a straightforward process of goal pairing. Namely that every

time a subgoal is proposed and added to a goal tree, the adversary's

assumed countergoal is immediately generated and also added to the
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goal tree. Consequently, wherever CP/x needs to take into account the

adversary actions, a complete goal tree representation of the

adversary's assumed perspective is also available, leading to

immediate selection of possible adversary actions.

Extending this two-agent goal pairing process to a more

general multi-agent goal matching process is straightforward. To do

this requires primarily that

* CP/x itself be generalized to accept as input the

top-level goals of any number of agents, and

" The 'countergoal' selection procedures in the goal

definitions needs to be generalized to generate

other goals for all agents, both competitive and

cooperative.

Although a generalized CP/x provides a framework for

processing the goals of any number of cooperative or competitive

agents, it does not necessarily imply that the generalied CP/x will be

an effective planner in this type of environment. The quality of the

planning process still depends on the goal processing procedures

defined in the goal objects. Specific techniques for selecting

matching goals and subgoals, that are appropriate to the multi-agent

environment, need to be embedded in the goal objects.
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4.0 SUMMARY

According to the original proposal, the goal of the first year of

this effort was to achieve the following milestones:

1. Implement a central planning control system for adversarial

planning that includes modules for controling goal genera-

tion, updating of hypothetical world states, determining

affected goals in a previsouly generated goal tree, and

replanning/backup procedures.

2. Implement a rudimentary version of the CP/x environment

that includes a general ability to define and develop

knowledge bases that CP/x can access.

3. Apply CP/x to at least one problem domain, specifically a

simple board game simulating a war environment.

In general, these milestones have been met, although the board

game selected for testing CP/1.0 was Othello and not a war game. In

fact, selection of an appropriate problem domain turned out to be one

of the most difficult problems facing the first year effort. This

difficulty occurred because of an inherent conflict between the need

for a domain rich enough to effectively test CP/l.0 capabilities and

the need to minimize knowledge engineering time so that we could focus

our efforts on developing CP/1.0 itself.

Othello is an alternating-play game that does not require a large

knowledge base of goals for a reasonable level of play, but has never

been programmed with knowledge-based search procedures. Consequently,

It provided a good domain for evaluating CP/l.0's search behavior.

Most interesting war games, on the other hand, were too complex to
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have been a suitable year one test domain. They would have required

that a substantial amount of time be dedicated to generating domain

specific utilities and knowledge engineering.

Regarding future work, the focus for the next two years will be

on systematically implementing and testing the various advanced

planning techniques discussed in Section 3.2. The immediate focus

will be on:

w testing the representative search and metaplanning

capabilities that are embedded in CP/I.0, but could

not be satisfactorily tested in the domain of Othello;

* implementing a facility for planning in domains that

involve uncertainty, information goals, and the use of

deception tactics; and

" implementing an automated hierarchical planning capability.
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A.9 AV EXAMPLE OF CP/1.0 TACTICAL SEARCH IN OTHELLO

For the board position shown in Figure A-1, CP/1.0 generated the

move tree shown in Figure A-2. Figures A-3 to A-7 show the

contingency goal trees associated with each branch of this move tree.

The specific goal objects that generated this search are shown in

Appendix B.
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1 3 4 5 6 7

_ o1

00 0 0 0 02
0 0 0D€ 03

0 0 ol 0 0 0 4
0 0 0 0 0 0 2

0 0 6

0 0 7

(0 7) = UPPER RIGHT CORNER (7 0) = LOWER LEFT CORNER

FIGURE A-i

INITIAL POSITION IN CP/1.0 OTHELLO SEARCH EXAMPLE

A-2



WHITE BLACK WHITE BLACK

(1 5) -- (2 6) - FAILED
POSITION

(5 7) (6 7) FAILED
INITIAL POSI ION

POSITION (3 0) (5 0) FAILED

POSITION

(7 3) - (7 4) - (7 1) - FAILED

NO OTHER POSITION

MOVE

FIGURE A-2

MOVE TREE FOR CP/1.0 OTHELLO SEARCH EXAMPLE

White Moves First
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IMRPOVE POSITION: PREVENT (IMPROVEPOSJTIOM)

IMPACNR:STOPACNR

IMP CNR(O 7):STOPCNR(O 7)

CNTRL_1_2_AWAY(O ,):STOP_1_2_AWAY(O 7)

NOTNRCNRPLAYSAFE(2 5):NOTNRCNRPLAYSAFE(2 5)

FAILED FOR
WHITE

NOTNRCNRTURNOVER(2 5):NOTNRCNRTURNOVER(2 5)

PLAY(1 5):NIL NIL:PLAY(2 6)

FIGURE A-3

FIRST CONTINGENCY GOAL TREE IN SEARCH

A-4



IMPROVE POSITION:PREVENT(IMPROVEPOSITION1) +

IMP A CNR:STOP A CNR +

IMPCNR( 7)STOPCNR (7 7)

CTRL_1_2_AWAY(7 ,):STOP_1_2_AWAY(7 7)

PLAY SAFE(5, 7)PLAY-SAFE(5 7)

FAILED FOR
WHITE

PLAY(5 7):NIL NIL:TURNOVER(5 7)

.IL:PLAY(6 7)

(+ indicates goal-pair kept from previous tree)

FIGURE A-4

SECOND CONTINGENCY GOAL TREE IN SEARCH

A-5



IM PROVE POSITION:.PIEVENT (It4PROVE POSITION) +

PLAYSIDE:STOPPLAYSIDE

PLAY-SAFE(3 0PLAY SAFE (3 0)

FAILED FOR
WHITE

PLAY(3 G):NIL NIL:TURNOVER(3 0)

.IL.PLAY(5 0)

(+ indicates goal-pair kept from previous tree)

FIGURE A-5

THIRD CONTINGENCY GOAL TREE IN SEARCH
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IMPROVEPOSITION:P'REVENT (IMPROVEPOSITION) +

___ I ___ __

PLAY_SIDE:STOP_PLAY_SIDE +

PLAYSAE(7 ,):PLAY SAFE(7 3)

F AILED FOR

PLAYP ):NILNIL:TURNOVER(7 3) TURNOVER(7 3 :NIL

ILPLAY (7 4) PLAY(7 ,.:NIL

(+ indicates goal-pair kept from previous tree)

FIGURE A-6

FOURTH CONTINGENCY GOAL TREE GENERATED DURING SEARCH
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IM PROVEPOS IT ION: PREVENT (IM PROVEPOS I TION)

PLAY_SAFE(7 3):PLAY SAFE(7 3) +

FAILED FOR
BLAC K

PLAY(7 3):NIL + NlL:AND[TURNOVER(7 3),NOT(PLAY 7 4)]

(+ indicates goal-pair kept from previous tree)

FIGURE A-7

FIFTH CONTINGENCY GOAL TREE IN SEARCH

A-8
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B.G SOURCE LISTINGS FOR CP/l.0 AND OTHELLO

The source listing for CP/1.0, the utilities for playing

Othello, and the Othello goal objects are provided below. Since

CP/1.0 is an intermediate product that will be significantly

enhanced and modified during the next two years of this program, and

Othello is primarily a test domain for debugging the CP/1.0

software, no attempt has been made to provide extensive internal

commenting of the code.

Instructions for playing Othello, using CP/1.0 are found in the

Intro.Othello file on the magnetic tape delivered with this report.
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CONTINGENCY PLANNER/VERSION 1.0 B-2

Nov 29 13:51 1994 cpl.O Page I

(der' search
(nlaabda (parses)

(Prot (selist trejs tree environment lart oveslag)
(mWn ((null (coir peaaf))

(Seto tree (saketree (tupl*ulvair)
(t
(sets tree (evil. (cadr Params))

(sets tre.,6 (list (list (derrao) (SejOfl M))
retryi
(Seto tree (minback tree))
(cond ((Cir (lastpair tree))

(cond ((sideffects Pselist)
(so retry))

(svitchsides 'Suil)
(return tre))))

(del minback
(l1mbd (tree)

(rrog (nevtree environment)
loop
(set@ $sort nil)
(set. neiitree (far-as-j'ossible tree;)
(cond ((ird (or (null (cur (lastpair tree))

(ee *sort 'tailed))
(can-.trio neetree))

(Seto treis (cddr treis))
(Set. tree (trio netitre4))
(swi tchsides)
(go loow))
((aid (ev *sort 'succeeded)

(can-trial neutree))
(sets gneis (cdr tnei))
(seto tree (trial rneutree))
(to 1w)))

(return ne~ire))))

(def far-..s-oossible
(lIms" (tree)

(ci'w environment board)
(noM (new..trvv)

(sw tchs ides 'coutrMoa)
(plaveout tree)
(prog nil

loop
(sweitchsides)
(Set. nev-Lre (cosrleateove tree))

(co n rewtree
(Soto tree neuAre))

(and (or too *sort 'succeeded)
(null new.tme))

(return))
(go 1w1)

(return tr))))

(del coarlestoe
(lambda (tree)



Nov 29 13:51 1984 cpl.O Page 2 B-3

(Prot nil
loop
(or (continue-P.lav)

(return tree))
(Seto tree (iviove.Awee*ee))
(eval (.icti (our (lastpair tree))

(Quote action)))
(do loo)

(det improvetree
(labda (tree)

(cond ((end (greaterp (lerdib tree) 2)
(condi ((all-or-nil (butlast tree)

(listtree
(imirovetree (lAStn tree))

(t
(retra (currejs Irei) (cur (laittair tree))
nil)))

(Wimll, Ssort)
(expand-tree tree))

(def expand..tre
(lambda (tree)

(cond ((end (geti (cur (top tree)) (suote action))
(oval C.4eti (cur (top tree)) 'feasible))

(Seto tsorf oil)
(Seto treus (cons (list (Sensva) (gentsym)) trejs))
tree)
(t
(cond ((eval (Seti (cut (tot tree)) 'Succeeded))

(Seto tsorf 'succeededJ)
tree)
((evil (geti (cur (top tree)) 'failed))
(Seto *sorf 'Failed)
nil)
(t
(Seo Shave (all-or-nil tree

(select-sub (top tree)
(cond (thawe

(attend (list 'tree
(list (car (top tree))

(lastrn thave))
(butlast (cddr *have))))))))

(def select-sub
(lambda (Peru)

(Prot (current curlist res)
(sot# curlist (set-sub (evil (geti (cur Par"o) 'subioal))

(Wt (curreis trejs) (cur Par..))))
(sets curlist (subset '(labda(k)

(eval~geti k. tasibly))
curl 1st) )

low
(setsa current (car cunlist))
(seita curlist (ode curlist))
(puttrop (curreji Irers)



B-4
Nov 29 13:51 1984 c,1.O Page 3

(cons cutrnt (set (curre.,s Srets) (cut pdromM)
(cur Parts))

(cond ((end current
(null (Seto mt

(expand-tree
Caaketree (countenircuriwot

(count Pare.))))
(so loop))

(return (cond (res
(list its nil))
(t
(list res)M)))

(def all..or.nil
(la"bd (isti list2)

(cond ((end (and listi list2)
(not (boual list.2 ( o (nil))

(aprend listi HADt))))

(def maketree
(lexpr (nears)

(list 'tree (list (art 1)
(cond ((Ureaterp nears 1)

for: 2)))

(def lastpair
(Is"d (tree)

(cond ((eeual (car tree) (sote tree))
(lasti'air (lastn tree)))
(t

Wdet butlest
(leebde (list)

(cond ((or (null list)
(to (length list) 1)

nil)
ft
(cons (car list)

(butlest (edr listM)))

(def sideffects
(l1mbd (pselist)

(Seto xxxx nil)
(Princ Osearchird for side effects")
(torpri)
(subset (ote (lambda WK

(possible (oaketre (countereeir k nil)))
Pselist)))

(def Possible
(lambda (tre)

(Prom (new..tree)
(switcbsides 'goal)
(erog nil



Nov 29 13:51 1984 cP1.O Faft 4 B-5

(switchsIdes)
(Sete nev-tree (cossrleatoove tree))
(cuid (#*eu.t ree

(Set. e m A&tree)))
(and (null neu-trie)

(return))
(9U loo))

(cond ((ee $side 'jail)
(return tree))

(t
nil))

(der switchsides
(lexpr (nPai)

(cond ((r(and(en rrar 1)
(Nm (arg 1) 1908u))

(an(not(ee nwar 1)
(vouel tside 'cou.tesoalM)

(der cup
(laabda (parse)

(cast par"M))
(der twit

(lamibda (prse.)
(cedar Poan)))

(der curreis
(lambda (list)

(casr list)))
(der addrejs

(labda (reject)
(Sete Srejs

(list (list (cons reject
(Caer treis))

(cedar Ireis))
(cedr Irvis))

(de? counterpair
(labda (subdoal cparent)

(list stiduwl
(countergoal subioal cparei,iL)

(Sete curside (muote white))
(sets $side 'i081))
(t
(der cup

(labda (Pare.)
(cadet Parse)))

(der count
(labda (prrn)

(eat porn)))
(der curre,s

(land (list)
(cedar list)))

(dtf addres
(lambda, (reject)

(Sete *reis
(list (list (cast Ireis)

(cons reject
(cedar Ircend)



Nov 29 13:51 1984 cio.O Pas 5 B-6

(cadr *reis)f)))
(def counterpair

(lambda (subsoal crarent)
(list (countersoal subsoal cparent)

fubgoal))
(sets curside (mote black))
(sets $side 'countersoal)))

(def coIumtersodl
(labda (sub cparent)

(car (int (oval Useti sub 'countergoal))
(oval (geti cparent 'sub..not..on-aove))))

(dot int
(lIs"d (si s2)

(cond ((and si s2)
(aptlio 'append (sapear '(lambda Wk

(listcar (was k IM)
s2))

(dot listcar
(labda (list)

(cond ((null list)
nil)
(t
(list (car list)))

(dot makesoal
(macro (call)

(Pttror (cadr call) It *feasible)
(cond (( wot (mem (cddr call) tern-joals))

(sets Permgoals (cons (code call) Pereguals))))
(Pros (soalname cur list)

(sets goalname (cade call) cur (caddr call) libt (cdddr call))
(Prog nil

(or cur (return))
(vuton soalnae cur)
(Sete cur (cap list))
(soe list (cdr list))
(go loop))

(return nil))
(list (Quote Putprop)

(list (auot. ote)
(cade call))

(ote (muoto goal))
(suot. (euote type))

(dot Puton
(macro (call)

(codr call)
(list (emu ote)

(cadt (eval (caddr call))))



Nov 29 13:51 1984 ct'1.0 Page 6 B-7

(list (euote euote)
(car (evil (caddr call))))

-(def feti
(lambda (at Pr)
* (cond ((null ae)

nil)
(t
(cand ((A (not (mea ate Pereloals))

(not (New ate teopgoals)))
(instan ea)))

(get at& Prop))))

(def Mener
(lambda (at@)

(cond ((Set at@ (Suote Sener)))
ft
(putprop ate

(sote Sre)))

(dot smfc
(lambda (ate)

(cond ((Set ate (auott Stert))
ft
(p'utprop ate

(implode (tekist Cfrosslash (explode ae)
(Quote sa'vcif)))

(dot uakefore
(Gacto (call)

(list (suote cuote)
(cidr call))

(list (euote ouote)
(cddr call))

(MOUt (guote form))))

(def instmn
(uicro (call)

(and (null (get (Senor (eval (cadr call)) 'torm))
(prim "undefined for@'))

(sets teetoals
(cons (evil (cidr call))

tumtsols))
(append (list (ouote akeloal)

(eval (cadr call))
(substit (spec? (eval (cadr call))

(set (ioner (eval (c~dr call))
(Guote, tore))))

(def Step
(lambda (Item I tok)

(u&war (ote (lambda (k)
(cond ((eaual k tok)

item)
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(cond ((and k.
(car M)

(Seta temp'
(isplode (append (explode otn)

(Zwnoklst (explode WM))
(putprup Leap gii (vuotv *erwr))
(putprop teep k biuotte sweif))
(return temp))
(t
(return nil)))

(def firstpair
(lambda (tree)

(cond ((not (eaual (car tree)
(ouote tree)

((caddr tre)
(firstpair (caddr tre))
(t
(top tree))))

(def listtree
(lmbda (tree)

(cond (tree

(det top
(lambda (tree)

(cadr tree))

(lambda (tree)
(prine 'achieve)
(ntwut2 tree))

(def nev.out2
(labda (tree)

(Prine (cur (top tree))
(cond ((count (top tre))

(P-irc (count (top tree)))))
(terpri)
(cond ((Oreaterp (length tree) 2)

(priinc bv ')
(rewout2 (lastn treeM)))

(dot singlethread
(lambda (tree)

(Ad (eftai (car tree)
(oucte tree))

(or (emil (length tree) 2)
(&Ad (eoual (letrith tree) 3)

(dot m-..-brmnch
(laebda (tree)

(cond ((Or (ee (length tree) 2)
(roill te)
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nil)
M(ot (sirdlethread (lastn tree)))
(app.end (butlast tree)

(list (res-l-.branch (lastn tree))))
4t

(buUlest Lme)))))

(dm1 can-trim
(lambd (tree)

(prod nil

(cond ((a" (dead (lastrair tree;))
true)

(sets tree (re...Lbranch tre))
(go low))))

(cond ((or (sing1ethread tree)
(null tree))

nil)
(Cintlethread (lastn tree))
(cait-trimi (butlast tree))
(t

(can-trim (lasin tree))))
(def trim

(lambda (tree)
(Prog nil

loop
(cond ((and (dead (lastrair tree))

tree)
(sete tree (tve.l-branch tree))

(cond ((not (singlethread (lastn tree))
(areend (butlast trve)

(list (trio (lastn tree))))
M(ull tree)
nil)
(t,
(trial (butlast tree))))))

(def can-trimi
(lImbda (tree)

(Prof nil
loop
(cond ((and tme

(dead (lastrair tree))
(set* tree (re-l-brarsch tree))
(go locp)

(greaterp (length tree) 2))

(dot trial
(lambda (tree)

(Prog nil
loop
(cond ((aNd (dead (Instroit tree))

tree)
(sets tree (rea-1jbronch tret))
(11doopc))))
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(cond ((and (es (length tree) 3)
(e. (lenth (caddr tree)) 2))

(cond M(ull (caaadaddr tree))
(rgvtop (currei tre.,s) (cadaadr t~ree))
(maketree (list (caaidr tree)

(Soalinst 'mndwt
(list (cadaadr tree)

(cadieadaddr tree))))
(t
(reera. (Currejs treis) (caaadr tree))

(list (caaadr tree)
(Caaadaddr treeM)

Ccadaodr tree))))
((49 (length tree) 2)
'(tree ((nil nil) nil))
it
(a~end (butlast tree)

(list (trial (lastn tree)M))))

(def dead
(lambda (pair)

(not (or (geti (cur Pair) 'action)

(def Playiout
(lambda (tree)

(cond ((greater, (length tree) 2)
(wae (euote Plraiout)

Ccddr tree))
((eiis. (length tree) 3)
(cond ((null (cedar (top' t ree))

(switdhsides 'cauntergoal))
((nuill (coat (to.' tree))
(evil (geti (cear (to.' tree)) 'action))
CslsuideM gd

it
(nlanout (caddr tree))
(nlayout (cdddr tree)))

(def' ,lanboard
(lambda (tree)

(cond ((ea (length tree) 2)
(curod ((eti (caaar tree) 'urdateactiu)

(eval (geti (caadr tree) 'u.'dateaction))
)

it
(some 'Piawboard (cddr tre))))

(det Saklst
(lambda (list)

(ped(cons 'M( ("no'r (muote (lambda (W
(cond (( etual k. 'IMI 1)i

(t

WOO)
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(Quote (I)1)))))

(def Smklst
(lambda (list)

(sarcar (ouate (lambda (k)
(cond ((meme k (euote (1( I)1)))

"1/I)

((eaual 'I I k)
'll)

(t

list)))

(def substit
(lambda (list for*)

(prof (tep)
(sets temp (cdr fore))
(ac (euote (lambda (tic tic)

(sets temp
(Oree tic tear tac))))

list
(car for))

(return tep))))

(def subset

(lambda (funct list)
(do ((cur (car list)(car list))

(s))

((null list)
S)

(sets list (cdr list))

(cow ((Uprl ftmct (list cur))
(sets s (aIendl s ur)))))))

(dif ewrv
(lambda (funct list)

(do ((cur (car list) (car list)))
((or (null list)

(not (eval (list funct 'cur))))
(cond ((nMull list)

t)))
(sets list (cdr list)))))

(det some
(labda (funct list)

(do ((cur (car list) (car list)))
((or (null list)

(eval (list funct 'cur)))
(cond (list

list)))
(sets list (cdr list)))))

(def setsub
(lamd (sett set2)

(smc '(lambda (W)
(sets set) (allbut k swLI))
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set2)

*(de? ness
(aInbda (list)

(cawd 4mnd tas.ll nessf'laS)
(See (cur (coadar. (last tree)) list))

(sets IwsSstla WI
(t

(set@ nussflag nil))

(uakefors or (ioall soil?)

(sub..not-..o..ov 'nil))

(countewftal (list (loulinst 'and (list (car figeti doall conterrnwi))

(saketore and (oall goul2)

4sub-not-oi-ove '(soul1 goalV)
(countersoal (list (toaliotst 'or (list (car (geti toall 'cuunter'iuai))

(car (geti SoA12 'co'jntergoal)M)))
(maketors mndnot (foall goal2)

(subtoal (alibut 'io.12 (oval (deti 'goall 'subgoal))))
("ub..noon..move (oval (geti 'goill 'sub-not-on-w.ove)))
(counterfoul (evil (geti 'goall 'counteniai)))
(feasible (evil (Sqeti 'goall 'feasible))
(succeeded (evil (geti 'Soil! 'succeeded)))
(failed (evil (Seti '.Ioall 'failed))))

(aakefore avid (goal)
(succeeded (evil (iceti 'ioal 'succeeded)))
(tailed (evil (*eLi 'gual 'tailed))))
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(def othello

(lexpr (Paris)
(arrav board t 8 8)
(sets xxxx nil)
(init)
(cond ((or (ee Paris 0)

(nMll (ar I)))
(readstart '/u/4721m/ rkirdcpx/ini i,))
(t
(readstart (rt 1))))

(cond ((or (lessp aris 2)
(null (art 2)))

(load '/u/1472li,/workinfx/othelloglls))
(t
(load (art 2))))

(do ((mc I (+ m))
(my))

((eoual w 60))
(displev)
(oye (readmove) 'black)
(display)
(Princ 'one woeent')(terpri)
(seLo tree (search board))
(plawboard tree))))

(del readmove
(lambda ()

(pro (tes)

loop
(Princ 'black -- enter vour eve ')

(seto temp (read))
(cond ((ea tesp 'r)

(neout tree)

(go loop))
((so tesp 'b)
(displav)
(to 1o))

(Ce. te.- 't)

(PP trv)
(go loop))

((eo temp 'S)
(Princ 'name of til : ')

(go loop))
((and tem

(or (toO t"e)
(not (ea (length tw) 2))

(rt (validsve temp 'black))
(null teap)))

(erinc 'invalid movv - trw again')
(terpri)
(go loopM)))

(return tep))))

(det move
(lambda (space color)
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(cond (space
(apply 'board (cons color space))
'saae '(laIbda (k)

(a (fliable sice (sublivL k space) v-ulu;
(flip spe (sublit k seace) Lolorm

(ddJacent space))))

(df flip
(lambda (space dir color)

(apply 'board (cons color (addlist space dir)))
(cond ((eoul (apply 'board (addlist (dddlist spaLe dir) dir))

(op color))
(flip (addlist space dir) dir color)))))

(df valideove
(lambda (space color)

(soe '(lambda (k)
(flipable space (sublist k -ow-e) color))

(adJseet srace))))

:def flipable
(lambda (space dir color)

(cond ((aUd (validp (addlist seace dir))
(eoual (aprl- 'Ioard (addlist space dir))

(ov color)))
(flipablv2 space dir color)))))

idef flipable2
(lambda (space dir color)

(and (validp (addlist space dir))
(cond ((eoaul (apply 'board (addlist sodcd dir))

(up color))
(Mlipable2 (addlist space dir) dir color))
((evual (aply "bard (addlist space dir))

color)
(addlist space dir))),))

(df display
(lambda (

(do ((i 0 (1+ i)))
((Ureaterp i 7))
(do (Wj 0 (+ j)))

((Ureater 7))
(displail i .7
(Prrnc , *))

(princ i)
(terpri)
(tertri))

(do W(.0 MI j))

((Ureaterp J 7))
(princ J)
(prirn 0))

(terpri)))

(del displa(
(lambda U A)
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(cond ((null (board i )
(Princ I ......')

Ct

(Princ (board i AM))))))

(de init
(lambda

(set* hide 'counterloal)
(sets Pselist nil)
(sets tewgoals nil)

(sete Puroals nil)))

(def readstart
(lambda (filename)

(sets Pt(infile filename))
(do (Mi 0 (1 i)))

((greaterp i 7))
(do ((W 0 Ml+ J)))

((greaterp J 7))
(bourd (read Pt) i j)))

(close t)))

(def sa -eae
(lambda (filename)

(sets t(outfile filenW))
(do (Ci 0 (14 i)))

((Ureaterp i 7))
(do (( 0 (U+ J)))

((lreater iJ 7))
(print (board i ) pt)
(terpri AM))

(glose t)))

(def validp
(lambda (subs)

(and (lessp (car subs) 8)
(lreaterp (car subs) -1)
(lessp (cadr subs) 8)
(greLerp (cadr subs) -1))))

(def op
(lambda (color)

(cond ((euual color 'white)
'black)
(t
'white))))

(def addlist
(lambda (11 12)

(macar 't11 12)))

(dot viblist
(lambda (11 12)

(macsr '- 1112)))

(def adjAmeit
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( lI bda (sou)
(subset 'validr Wmaa '(lambda WI

(subset 'validr (maccar '(lmbda (k)

(addlist k sau))
'((2 0) (0 1) (0 2) (-2 2) (-2 0) (-1 -2)
(0 -1) (2 -2)))))

(def tway
(lambda (n)

(subset 'validp (.na '(ls)a (k)
(adllist k se))

'M( 0) (2 2) (0 2) C-2 2) (-2 0) (-2 -2)
(0 -2) (2 -2))))

(nlanbda (Parses)
($arrt" (car Parse) t 6 6)

(do ((i 0 (1+ i)))
((Ureater, i 7))
(du (W. 0 (1+ A)))

((Sreater, i 7))
(a-plv (car Paraes)

(list (apply (code Parses) (lis.t i j)) i A)))

(def continue-pla
(lambda ()

(sets xxxx (not xxxx))))

(def act
(ls"d (space color)

(apply 'environment (cons color space))
(mapc '(lambda (K)

(and (arlipable space (sublistk sp#ee) v-ulur)
(dflip sc (subliLt k %,Pac) olor)))

(ad Jacent space))))

(def aflip

(la bda (space dir color)
(applv 'environment (cons color (addlist space dir)))
(cond ((eaual (apply 'erwiruae4it (Wdlist (addlist space dir) dir))

(OP color))
(aflip (addlist space dir) dir color)))))

(def aflipable

(lambda (space dir color)
(cond ((an (valide (addlist space dir))

(evudl (aPply 'Lnvironeent (aJist seace dir)
(oP color)))

(aflipoble2 space dir color)))))

(def aflipable2
(lambda (space dir color)

(ard (valide (dlist space dir))
(cond ((eual (aely 'enviro ent (dMditt sp-e dir))

(op color))
(aflipable2 (addlist space dir) dir Malor))

((ewal (apply 'nvirmment (oddlist space dir))
color)
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(addlist space die)))

(def adisplav
(lambda (d0 ( (+i)

(do W ( 0 + )

(airir t i 
(princ 

(tewri)
(terptz))

(do MU 0 (H* Mf)
((greaterp .' 7)
(princ .,)
(princ

(terpriM)

(def adisplavi
(lambda (i j)

(cond ((null (environment i l))
(princ .. )

ft,
(print, (environment i A)))

(def avalidmove
(lamba (space color)

(some '(lambda Wk
(aflipable space (subljbL k wpice) vglur))

(adjacent space)M)
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'( This file contains all the variable definitions
and othello frwLimis that are explicitly called
in Lhe otheUlo lo objects)

(sete sidses '((2 2) (2 3) (2 4) (2 5)
(3 2) (3 3) (3 4) (3 5)
(4 2) (4 3) (4 4) (4 5)
(5 2) (5 3) (5 4) (5 5)))

(sets sideses '((0 2) (0 3) (0 4) (0 5)
(2 0) (3 0) (4 0) (5 0)
(7 2) (7 3) (7 4) (7 5)
(2 7) (3 7) (4 7) (5 7)))

(set. nearsidesos '( (1 2) (1 3) (1 4) (U 5)
(2 1) (3 1) (4 1) (5 1)
(6 2) (6 3) (6 4) (6 5)
(2 6) (3 6) (4 6) (5 6)))

(set. cnrses '( (0 0) (0 7) (7 0) (7 7) ))

(sets sidenearmr '( (0 1) (1 0) (1 7) (0 6)
(7 1) (6 0) (6 7) (7 6)))

(sets notsidenearcnr '( ( 1) (1 6) (6 1) (6 6)))

(sets nearcnr (aPeend sidenearmnr notsidenearenr))

(sets alldirs 'M( 1) U1 0) (0 1) U1 -1) (-1 1) H(-1 -) M- 0) (0 -M))

'( returns list of speaes that are two.am" frm the souare cor
and of the sate color as side)

(def nM-two..awa
(lmibda (car side)

(prof (Ist)

(amcar '(lambda (k)
(and (eeual (environumnt (car k) (cair k))

side)
(cons k lIst)))

(tuoa-swa cnr))
(return Ist))))

'( indicates is there is a legal Play tw.awu from Position cnr fur Ue
color defined in side)

(def cam.Plavw.l2_wa
(lambd (car side)

(Prol (flog)
(wacar '(lia)da (k)

(and (null (environment (car k) (c#dr k)))
(avalidoe k side) (seto lag t)))

(two . ay cr))
(return flaI))))

'( finds a plow in the direction of dir that mill turn over
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the eeice In the snuare Pos)
(def turn.ela
(lambda (eos dir)

(pros (side flg ki k2 new)
(sets side (environment (car .os) (cadr los)))
(sets new Pos)

loop (sets new (list (add (car new) (car dir))
(add (cadr new) (cadr die))))

(cond ((or (> (abs (car new)) 7)
( (abs (codr new)) 7)
( (par new) 0)
(( (oder new) 0)) (return nil))

((eosua (environmenL, (car new) (cadr new)) side)
(go lo))
((null (environment (car new) (cadr new)))

(seto ki new))
(t (sets k2 now)))

(and (null fig) (seta fl t) (sets new Pus
(sets die (list (times -1 (car dir)) (tim -1 (wadr dir))))
(go loce))

(cond ((or (null kl) (null k2)) (return nil))
(t (return kl))))))

'(finds all legal moves that will turn..over the eiece in the Pos souare)
(def turn-soves

(lambda (pm)
(erog (lst)

(mecar '(lambda (k)
(and (sets k (turn-lau eos ))

(sets lst (cons k 1st))))
'M( 1) (1 -1) U1 0) (M IM)

(return 1st))))

'(finds a clav in direction die that will allow the Piece in eojition em
to be turned over on the next Pla )

(def setuP.trn--lay
(lambda (pos dir)

(ePro (side flo kl k2 3 new)
(seto side (environment (te Pcos) (eadr cos)))
(sete new pos)

loop (sets new (list (add (car new) (car dip))
(idd (cadr new) (cadr dir))))

(cond (tor (> (ebs (car new)) 7)
(D (abs (eadr new)) 7)
(< (ar new) 0)
(< (care new) 0)) (return nil))

((osual (environment (eat fe") (tedt w)) side)
(and (sets k3 (cons new k3)) (to loop)))

((null (enviroment (tar now) (cads new)))

(sets kl (cons new ki))))
(and (null fil) (sets fl t) (sets new Pvs)

(sets die (list (times -1 (car dir)) (iws -1 (cadr dir))))
(to loup))

(return (,eeend k3 kt)))))

'(
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(def set-uwurn..taJvs
(lambda (Pos)
(Prot (1st)

(sanar '(labd (k)
(and (sets Ist, (append 1st

(set..up.turmi es k* )) ) )
'M( 1) (H -1) (1 0) (0 1.))

(return lIst))))

( set.ups.oves finds the set of all souares that it side could (caLtrul Utw1
the goal souare could b occupied wx Ure next turn)

(def set-upJmoves
(lambda (enr side)

(Prog (istl lst2)

(or (sete Istl (turn.targets (one_.aav cnr) (op side))) (retrun nil))
loop
(sete Ist2 (append

(sett-.u turn.la (car Istl)
(sub-ros (car Istl) cnMr))

lst2))
(and (sere lstl (edr lstl)) (to loop))

(return lst2))))

'( legals.? tests if liven Pos is a lesal one)
(def legalse?

(lambda (k)
(and (( (car k) 8)

(> (car k) -1)
(< (cadr k) 8)
> (cadr k) -1))))

'( one.awav returns all lelal souares one Position awav fro
specified Position)

(dl or.neav

(lambda (M)
(reot (1st)

(sete Ist
(urcar

'(lambda (k2) (list (add (car k) (car k2))
(dWJ (cadr kl) (cadr k2))))

,M( 1) U1 0) (W 1) U(1") M- 1) H- -1) M' 0) (0 "IDM)

(sete 1st (subset 'leldlse? 1st))
(return st))))

'( turn.targets given a list of board Positions returns those occupied
by the sPwified side)

(del tumrntargets
f1labda (kl side)

(Prog (lst)

'(lambda (k2)
(and (equal (env k2) side) (set. 1st (cons k2 lst))))

kI)
(return 1st))))

'# nv is a single arguesent version of environment)
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(def env
(Iabda (M)

(enviro oent fear k) (cadr M))))

4 this is aot a good utility)
(def mnrelst

(labda (W)
(and (null (env )) (avalideove k 'black))))

'( add-.pos input = two euual size list of numbers
output list of sues of nuabers in Use ilut litO)

(def addjos
(lmbda (MI k2)

(Prot (Ist)
loop
(set. Ist (cons (add (car kl) (car k2)) Ist))
(sets k1 (cdr k1))
(sets k2 (cdr k2))
(and kl (so loop))
(return (reverse Ist)))))

'(sub.-pos iwut - two eual size list of rKubers
output c list of subtractions of second numb set rue Nirst)

(def subpos
(labda (kl k2)

(pros (1st)
loop
(sets 1st (cos (diff (car k) (car k2)) lst))
(seto kl (cdr k1))
(sets k2 (edr k2))
(and kl (So loop))
(return (reverse lst)))))

'( one-amau returns all legal swares one puiitio, away fro
specified Position)

(def one-aav
(lambda (1.1)

(pros (1st)
(seto Ist

(smpear
'(l ab) (2) (list (add (car k) (car 2))

(add (cadr k1) (cadr k2))))
alldirs))

(sets Ist (subset 'legalso? Ist))
(return Ist))))

Pml-cptrn input P position and a direction
output patt r of black white &WJ blatik swuares in directiyi)

(def Piece.ptn
(lambda ('os dir)

(proi (new lstl lst2 tv)
(sets new Pos)
loop

(sets new (add.,os new dir))
(coid

((esalse? new) (Seto Isti (cons (list (env newi) flew) lbU))
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(du 1oop))
looP2

((null Isti) (return Ist2))
M(ull lst2) (seto Iht2 (cons (cat Isti) 1st2M
((eeual (caar jIsl) Icaar Ist2))

(seti tow (c~ons (cedar Isl) (edar Ist2)M
(sets tap (cons (caat lst2) tap))
(set. lst2 (cons top (edt lst2)

ft (sets 1st? (cons (car Isti) lst2)
(sete Isti (cdp Isti))

'tum-to-save inputt zPosition direction and side to save scuare for
output a location of op side Peice to bie Lumeid over or nili

(def turn.to..save
(lambda (iros dir side)

(trog (1st)
(sete 1st (pie-'etrn Pos dir))
(cond ((and (towl (caar 1st) side) (esuul (coadr 1st) Wet sideM)

(return (cadadr 1st))
(t (return nil)))

'turnall-tosave input m Position to Prevent other side ("i Pldvii jin
outpvt - list of po-,tions of of, side Pieves to turt, over)

(def turn-.allto-save
(labda (pos side)

(delete nil
(Sapear

'(luebda Mk (turn-osave Ps k side))
alldirs))))

'delt-te..list deletes elesents of the first list
fro& the second list)

(def delete-.list

(Prol 0)
(sapcir 'lUs"d (k)

(sets 1st2 (delete k lst2))
lISM

(return 1st2)
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(Setif eselist (matcar
'(laabda Wk

(loalinst 'Fla% W)
$ f~subset 'cier..tftt '(to 0) to 7) (7 0) (7 7)))

(det topsoaledir
* (lambda 0)

(list 'imerove-i'oition (goalinst 'Prevent 'ieprove.pusition))

(this is a generic goal tot the coinjuction of twu specific goals
(aetone and Wgall loul2)

(subloal '(goall goul2))

(countergoal (list (goalinst 'or (list (car (beti dodll 'cuunterioal))

'this is a generic bgial for the disjunctioni of two sPecific goals
(makefora or Wball goal2)

(54b.noorwaove '(6il))
(countergoalllist (loalinst 'and (list (car (geti goa11 'cijuntergoal))

(car (geti !ioMl 'cowitertoal))))M

- 'C top level goal for othello Playj)
(sakeloal iurrove-Position

(cojterdoal (list (goalinst 'Prevent '(iaProve..osition)))

'C this is a Seneric goal that instavi1iite'a 0uilY clurtergoals
(maketora Prevent (gname)

(countergoal (list gnaee))
(subioal nil))

'othello goal to Play in a corner
(makegoal atcka..cnr

(countergoal (list 'dfnd..a..nr))
(s',504 (maccar '(lambda Wk

(tualinst 'atck~cnr W)
((0 0) (0 7) (7 0) V7 7)

(sudb.not..on.aov (manor~ '(lambda Wk
(soalinst 'Atck-nr W)

'(0 0) (0 7) (7 0) (7 7)))

'counter goal to stoc atcLa.cnr fro Plowing in a corner
(.askeoal dfnd.....cr

(countergoal (list 'atck.a.cnr))
fibbmoal nil)
(ro,..nat-on.aoye (macr '(lambda WK

(goalinst 'dfnd..cnr M)
- '((0 0) (0 7) (70)1(7 7)))

'(Positional goal to try to better Position around a corner
(OakegoaI imp-a-clr

(coutrial (list 'stop..aenr))



Nov 29 13:50 1984 oth~soals.1 Page 2 B-24

(subloal Wmar '(lambda Wk

'(0 0) (0 7) (G 0) (7 7)))
(sub-not.on-sm (mapcar '(lambda Wk

(doalinsi 'iarpcnr W)
'(0 0) (0 7) (7 0) (7 7) ))))

'counter goal to star imp-.a.cnr from getting a better corner Pftiivm
(sakegoal stoe..a..cnr

(subgoal nil)
(sub..not-on.ove (marcar '(lambda WK

'(0 0) (0 7) (7 0) (7 7)))

'instantiates atcLa.cri ainst a specific carnei i
(eakefarm atck,.cnr (carl car2)

(countergoal (list (gualinst 'dfnd..cnr '(corl car)
(subgoal (cons (goilinst 'Plev '(carl cor2))

(aeir '(lambda (W

(set-up.moves (list carl cor2) curside)
(sub.not-.on-move nil)
(tailed (eoual (environment carl cor2) (op curside)

'counter goal of atelLa..cnr
(makefors dfnd..cnr (carl car?)

(countergoal (list (goalinst 'ate..crir '(carl car2)
(sub~oal (list (goalinst 'plev '(carl car?))

(sub-not-on-ove nil)
(failed (eoal (environment carl car2) (op ciirside)

'instatniates ispa..cnr aMainst a specific carner)
(uakeform imp-enr (carl car2)

(cauntersoal (list (sualirtst 'stop..crr '(carl car)
(subgoal (list (goalinst 'ctrpl-12-awiav '(carl cor)
(suk..not.on-s.ove (list (goalinst 'ctrl-12-.iav '(torl ear?)
(feasible (and (null (environment carl cor2))

t)

'counter goal at imp..cnr)
(sakefor. stor..cnr (carl car?)

(countergual (list (Soilirrst 'ctrl-cnr '(carl cor2)
(subsoal (list (goalinst 'Play '(earl car?))

(goalinst Isto-12.wav '(carl car)
(sub..not-on-eave (list (goolinst 'plev '(carl car?))

(goaligist 'stoe.L.2-.,way '(car! car))

'4 ftal to rlaw on a space that is one inct rmoved trom. awroor
(makeform ctrl.1.2-saw (carl cot?)

(counterwal (list (goalinst 'stop-1l.2-swov '(corl cur2)
(suIoul

(marcar '(lambda WK
(cand ((member k. sidesas)

(goalirest rplaw..safe ki,
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ft
(faaljnst 'not-nrenr-plav-.safe OM))

(two-own '(corl cor2)
(sub.ot.on.ove nil))

1( counter doul to ctrL..2..Aev)
(makefors stop-1-2.away (corl cor2)

(countersoal (list (gouliwtst 'etrl-12.aiev '(earl cor2)
(suh~oal nil)
(sub..not-on.move (sopear *(imbda Wk

(cond ((member k siduses)
(iualirrst ',la&i-safe Mi

(t

'( goal to play a Piieve on one of the side souanef)
(eakefoal Play-side

(countergoal (list 'stop..elay..side))
(subloal (anear '(lambda Wk

sideses))
(suk.,not-.or-oove nil))

'counter goal of rlav-side to Prevent Plavinl on the side
(sakesoal stop--jlay-side

(cotiitertool (list 'Pla-side))
(sdyMoal nil)
(sub-nat-.o ove (mvcar '(lambda WK

(foalinst 'Play-sate M)
sidesas)))

flo to Play in the middle which is oenrallv a saft noahressive, Play
(Sakuioal plnaaiddle

(countersoal '(nil))
(subgoal (matear '(lambda (W

2idsas)))

(Plaw-safe is a goul to Play on a saret and not be turned over
(makefonm Plmw..saft (p1 W2)

(counterical (list Nwolinst 'Play-.safe '(sPI %p2)
(sd.,Soal (list (foalinst 'Play '(sPI s,2))

(ioalinst 'turn-over (sPI sP2)
(sub..roton-sove (list (loalinst 'tuIILoverI (spi %,2)

t(feasible (or (and (taual (environment sp1 We) (op curside))
(tuvmws '(s.-1 sp2))

(and (null (environment sel sP2))
(ovalidmove '(sPI sP2) cur-side)

(failed (and (eeual (environment spl We) (op curside))
(null (tur-nio '(sPI seM)))

'like Plas-sate but excludes Plays. next to a corner Position
(aketorm not.nrcnn..,l ujs afe (sPl sp2)

(coianterfoal (list (loalinst 'not-nrnrlaw-safe '(spl sr2)
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(subioal (list (loalintst 'Play '(spi sp2))
(goalinst 'not..nrcnr-tuvnk-uvr '(spi sp2)

(sub..not-on..aove (list (ioulinst 'not-nrcnr.turn-.over '(sdl sc2))))
(feasible (or Oan Nm~il (erwirorevt spI Wc) 4.eanidv))

(delete-list nearcnr (tusrn..awes '(mci ws2)
(and (null (environmnt spI sp2))

(avalidmove '(sdl sc2) curside)
(failed (and (eUal (environmt set sp2) (op curside))

(null (deloe-elist nearcar (turn-s.oves '(w1 s..2M))))

'( iuwl to Prevent oc~onent from Plav an a souare on Vie next am
(aakefors stoeclaw (corl cor2)

(couterioal nil)
sbsal (maccar '(lambda Wk

(joalinst 'turn-over Wi
(turfL-all-to-smv (list cvrl cor2) curside))

(sub..not.on-move nil))

'( like turn..overy but does not allow' Plav next to corner)
(makeform not..nrcnr-turrLover (spi st'2)

(counterloal (list (goalinst 'not-nrcnr-un.over '(sdl sp2))))
(sdb~oa1 (inapcar '(lamba Wk

(doalinst 'claw W)
(delvte-list neimcir (turn.*ves '(sp1 spV))

(suh,.not.on..aove nil)
(feasible (delete-list nearcnr (turn.moves '(scI 02?))M)

'( oal to turn-over a piece Qn a sauare
(makefors turn-over (s.'1 sp2)

(countersoal '(Nil))
(subsoal (macar '(lambda Wk

(goulinst 'clav W)
(turneoves '(sPi Sc?)))

(feasible (turn..oves '(sdI sp2)

'( if nothini *lse ueorkst then claw onvuhre)
(makesoal Plavaiw

(subgoal (accar '(labd Wk
(foalinst 'plaw W)

(areon RidGuS
(deletelist nespenr nearsideses)
(deletelist neapcnr sidesvu)
nearcnr))))

'( Mal to slyly play on a slee)
(sakefors clav (set sp2)

(countersoal '(nil))
(feasible (and (null (environment spi sp2))

(avalidsove 'fil sp2) curside))
(action (act '(mci sp2) curside))
(rdatuactian (move '(sal sc?) curside))


